12 août 2011 5 12 /08 /août /2011 10:03
anim corium1Cette page est la deuxième partie de l’article
« Le corium de Fukushima ».
Pour revenir à la première partie, cliquer ici :
 
   
 
Sommaire
 
Le corium de Fukushima
 
partie 1 : description et données
1. Définition du corium
2. Matière de tous les extrêmes
3. Quand le corium de Fukushima s’est-il formé ?
4. Combien de tonnes de combustible ont fondu ?
5. Aspect et composition du corium
6. Progression du corium
 
partie 2 : effets et dangers
7. Que se passe-t-il quand le corium rencontre du béton ?
8. Que se passe-t-il quand le corium rencontre du métal ?
9. Que se passe-t-il quand le corium rencontre de l’eau ?
10. Que veulent dire les termes « Melt-down », « Melt-through » et « Melt-out » ?
11. Possibilité de contenir le corium
12. Dangers du corium

 
7. Que se passe-t-il quand le corium rencontre du béton ?
Au contact du corium, le béton se vitrifie puis se décompose et ce, de plus en plus vite au fur et à mesure de l'augmentation de la masse qui s’accumule au même endroit. Un béton siliceux a un point de fusion à 1300°C. Un corium à 2800°C le transforme ainsi en divers gaz et aérosols : chaux vive (CaO), silice (
SiO2), eau et gaz carbonique, mais aussi monoxyde de carbone et hydrogène qui peut être produit en de grandes quantités à cette occasion.
La chaux vive, à l’état solide, réagit habituellement avec l’eau en produisant de la chaleur et de la chaux éteinte (Ca(OH)
2). Il est probable que des phases de condensation de la chaux entretiennent ainsi la chaleur du corium.
Du tellure est aussi relâché au fur et à mesure de la décomposition du tellurure de zirconium.

Tous ces produits, entre autres, se mélangent donc et interagissent continuellement, alimentant l’énergie du magma.
L'interaction corium-béton comme celui du bouclier inférieur de Fukushima Daiichi produit une fulgurite au point d'attaque, c'est-à-dire que le béton se vitrifie et forme un tube ‒ dont la structure cristalline est proche de celle des céramiques ‒ et se désolidarise du reste de la masse de béton car sa structure moléculaire est différente. Ensuite cette fulgurite, d'un diamètre de quelques centimètres à quelques dizaines de cm selon la masse de corium, peut servir de conduit pour le reste de la masse en fusion. La structure moléculaire des fulgurites procure à celles-ci une faible conductivité thermique et de ce fait, le reste de la masse de béton ne peut pas ou plus agir comme dissipateur thermique.

405px-Graphic TMI-2 Core End-State Configuration8. Que se passe-t-il quand le corium rencontre du métal ?
Il y a peu de métaux qui résistent à des températures de 2500 à 3000°C. De plus, ces métaux sont rares et ne possèdent pas les propriétés mécaniques de l’acier. C’est pourquoi les cuves des réacteurs sont toujours fabriquées en acier. Tout va bien si la température est maîtrisée. Mais en cas de panne du système de refroidissement, la cuve peut subir de graves dommages causés par la montée de la température et de la pression. Le point de fusion du fer étant à 1538°C, on peut comprendre pourquoi une cuve ne résiste pas longtemps à un corium puissant comme celui de Fukushima.

Par ailleurs, dans une atmosphère inerte, l'alliage argent-indium-cadmium provenant des barres de contrôle produit du cadmium. En présence d'eau, l'indium forme les instables oxydes d'indium et hydroxyde d'indium qui s'évaporent et forment un aérosol. L'oxydation de l’indium est inhibée par une atmosphère riche en hydrogène. Le césium et l'iode des produits de fission volatiles réagissent pour produire l'iodure de césium, qui se condense aussi sous forme d'aérosols.
Le bain de corium est donc un milieu multiconstituant et multiphasique (liquide, solide, gaz) dont la composition et les propriétés physiques évoluent constamment au cours de ses interactions avec les éléments de son environnement.

9. Que se passe-t-il quand le corium rencontre de l’eau ?
L’eau est « craquée » à partir de 850°C par thermolyse, ce qui signifie qu’elle subit, à cause de la chaleur, une réaction de décomposition chimique en deux éléments : l’oxygène et l’hydrogène. Dans le même temps, l’eau subit une radiolyse, qui est le « craquage » de la molécule d’eau par la forte radioactivité, en donnant des radicaux libres d’hydrogène et d’hydroxyde. Dans les deux cas, en expérimentation, on constate autour du corium la formation d’une bulle de gaz formée d’hydrogène, d’oxygène et de vapeur, plus ou moins importante suivant la quantité de corium, son activité et sa température. De ce fait, l'eau n’est jamais vraiment en contact avec la masse en fusion.
La radiolyse et la thermolyse participent à la perte d'énergie du corium sur le long terme mais pas à un refroidissement à proprement parler, sauf à partir du moment où le corium a perdu son état de criticité.
 
 
vapeur 
 du réacteur 1
 (début juin 2011)
 
 
 
 
 
 
 
10. Que veulent dire les termes « Melt-down », « Melt-through » et « Melt-out » ?
On rencontre parfois ces mots dans les articles concernant la fonte des cœurs de réacteurs nucléaires. Ce sont des mots anglais qui n’ont pas d’équivalents en français.

« Melt-down » (ou « Meltdown ») est un terme général faisant référence à la fusion d'un cœur de réacteur nucléaire à la suite d'un grave accident nucléaire. Lors de cet évènement, les barres de combustible fondent et s’effondrent sur elles-mêmes. Si le refroidissement n’est pas rétabli suffisamment tôt, elles se retrouvent dans le fond de la cuve sous la forme d’un corium.

Le « Melt-through » est la suite logique du « Melt-down ». Suite à la fusion du cœur d’un réacteur nucléaire et du percement de la cuve, ‒ le met-through de la cuve du réacteur peut prendre de quelques dizaines de minutes à plusieurs heures ‒ le corium peut poursuivre son avancée en traversant le fond de l’enceinte de confinement. S’il n’est pas étalé, refroidi ou piégé dans une cavité prévue à cet effet, il arrive finalement à perforer la dalle de béton de base du réacteur.

 

 
Animation du ministère de l’Industrie du Japon sur le Melt-through dans un réacteur du type de Fukushima.
 
 
 
Le « Melt-out » correspond à la phase finale de cet accident majeur. Le combustible fuit à l’extérieur des différentes barrières de confinement des réacteurs, soit la cuve du RPV et l’ampoule du Drywell : il atteint le sol géologique, continue sa descente ‒ plus ou moins rapidement selon la nature du terrain ‒ et diffuse une forte radioactivité dans l’environnement. Il est probable que l’on doive ce nouveau mot à Hiroaki Koide, de l’Université de Kyoto, car l’expression semble apparaître pour la première fois dans un article rapportant ses propos. Ce phénomène est aussi connu sous le nom de « syndrome chinois », en référence à des travaux évoqués pour la première fois par le physicien Ralph Lapp en 1971 (7), mais surtout à un film catastrophe sorti quelques jours avant l’accident de Three Mile Island. A ce propos, il est peu probable que le corium puisse rejoindre le magma, et de toute manière impossible qu’il puisse dépasser le noyau terrestre.

11. Possibilité de contenir le corium
Comme le souligne la
synthèse R&D relative aux accidents graves dans les réacteurs à eau pressurisée : Bilan et perspectives (2006, IRSN-CEA), « il n’est pas possible, sur la base des résultats des essais réalisés (…), de conclure actuellement quant à la possibilité de stabilisation et de refroidissement d’un bain de corium en cours d’ICB [interaction corium-béton] par injection d’eau en partie supérieure. Les progrès dans ce domaine sont malaisés du fait des difficultés technologiques (effets de taille, ancrage de croûte, représentativité du mode de chauffage, …) auxquelles se heurte la réalisation d’essais en matériaux réels à une échelle suffisamment grande. »
Donc pour ce qui concerne le corium, l’arrosage des réacteurs de Fukushima est bien une mesure de pis-aller. En fait, l'eau apportée n'est pas destinée à refroidir l'ensemble du cœur initial mais à maintenir en place le corium résiduel. Celui-ci, dont la masse réduite n’engendre plus de criticité, peut en effet être refroidi.

 
corium irsn video3 Vidéo d’un corium 
 contenu dans un creuset : 
 expérience du CEA 
 diffusée par l’IRSN
 
 
 
 
 
 
Le pire des cas serait un corium qui s’engouffrerait ou s'enfermerait dans le béton ou le sol, ce qui non seulement offrirait la meilleure forme possible pour conserver son intégrité, augmenterait le nombre de neutrons récupérés, mais en plus, la masse deviendrait, de facto, inaccessible, ce qui le rendrait impossible à refroidir.
C’est ce cas de figure qui semble se produire actuellement à Fukushima pour au moins l’un des réacteurs (n° 1). D’où l’idée de construire une enceinte souterraine qui limiterait la dissémination de la radioactivité dans le sol. Mais Tepco, entreprise privée exsangue, ne paraît pas être pressée de protéger l’environnement car ce projet, s’il était soumis aux actionnaires, ne serait sans doute pas accepté car trop coûteux.
Lors de l’accident de Tchernobyl, les Soviétiques n’avaient pas hésité à construire une dalle de béton sous le réacteur pour empêcher la descente du corium. Pourquoi les Japonais n’ont pas fait la même chose ? Peut-être à cause du coût, peut-être à cause de la présence de l’eau, peut-être parce que c’était trop tard ?
 
12. Dangers du corium
Les dangers du corium sont nombreux et vont s’inscrire malheureusement dans la durée. D’où l’absence de communication de Tepco sur le sujet…
 
 Explosion-centrale-Fukushima.jpg   Le premier danger est la formation d’hydrogène. On connaît bien le danger de ce gaz qui a provoqué les explosions dans bâtiments des 4 premiers réacteurs au cours des premiers jours de la catastrophe. C’est ainsi que l’hydrogène, l’élément le plus simple et le plus abondant de l’univers, est aussi le gaz le plus redouté dans l’industrie nucléaire.
Or le corium, une fois constitué, continue à en fabriquer. On a vu plus haut comment : en craquant l’eau par thermolyse et par radiolyse, mais aussi lors de la vaporisation du béton. C’est pourquoi Tepco injecte régulièrement de l’azote dans les réacteurs, afin d’atténuer les effets explosifs de l’hydrogène en présence d’oxygène. Une nouvelle explosion pourrait être catastrophique, car les bâtiments ont déjà beaucoup souffert ‒ en particulier le n° 4 dont la structure est devenue instable ‒ et les piscines de combustible usé sont perchées à plus de 20 mètres de hauteur. Ce serait donc véritablement un désastre si l’une d’elle venait à lâcher.
 
Le deuxième danger est précisément la faculté qu’a le corium de fragiliser le béton. Dans le cas où il y a Melt-through, le corium le traverse sans problème, mais son action va avoir une conséquence sur la solidité des fondations : lors du refroidissement de la fulgurite, il se produit un changement de phase qui a la particularité de produire une forte augmentation de volume ; ainsi les parois de béton en contact, mais désolidarisées mécaniquement des fulgurites, sont détruites par effet de compression. On peut donc s'attendre, avec le refroidissement du bouclier inférieur dans les mois à venir, à une destruction d'éléments massifs de la structure en béton de soutènement, ce qui pourrait avoir plusieurs effets négatifs : fragilisation des bâtiments réacteurs et apparition de failles supplémentaires où l’eau hautement radioactive utilisée continuellement pour le refroidissement pourrait s’échapper dans l’environnement, accentuant la pollution.
 
Un troisième danger a longtemps été évoqué dans les premières semaines de la catastrophe : la possibilité d’une explosion de vapeur. Le corium, dans sa descente souterraine, pourrait rencontrer une masse d’eau qui, sous la chaleur du magma, la transformerait immédiatement en vapeur qui, avec la pression engendrée, provoquerait une énorme explosion si l’eau n’est pas dans un milieu ouvert. C’est ce que redoutaient déjà les soviétiques à Tchernobyl ; pour éviter ce grave danger, ils avaient vidé la piscine de suppression de pression avant que le corium ne l’atteigne. A Fukushima, on peut se demander si le même scénario ne s’est pas produit car le 4 avril, Tepco a commencé à vider 11 500 tonnes d’eau. Le porte-parole du gouvernement, Yukio Edano, annonçait à l’occasion : « Nous n'avons pas d'autre choix que de rejeter cette eau contaminée dans l'océan comme mesure de sécurité » (8). Quant au porte-parole de Tepco, il pleurait en annonçant la nouvelle. Pleurait-il parce qu’il déversait de l’eau faiblement radioactive dans la mer ou parce qu’il savait que le corium allait définitivement être perdu ? Dans cette hypothèse, le corium (de quel réacteur ?) aurait mis plus de trois semaines pour atteindre les sous-sols de la centrale.
 
Quant à la possibilité de rencontrer brutalement une masse d’eau naturelle, cela est peu probable. En effet, une nappe phréatique n’est pas un lac souterrain, mais une masse d’eau répartie dans le sol entre les éléments le constituant. Si le corium traverse cette nappe, il ne rencontrera pas suffisamment d’eau à la fois pour provoquer une explosion. Cela provoquera en revanche des jets de vapeur, voire des geysers, qui pourront apparaître n’importe où à la surface, passant dans les failles et les interstices du sol. Et cela constitue le quatrième danger, celui de la contamination de l’environnement. L’eau, au contact avec le corium, se charge d’uranium, de plutonium, de cobalt, de césium, etc. à des niveaux extrêmement élevés et se trouve donc fortement contaminée. Si elle parvient à sortir de terre, la pollution se propagera dans l’atmosphère sous forme de vapeurs, de gaz ou d’aérosols radioactifs. Si la vapeur se condense dans le sol, elle polluera irrémédiablement le sol, et les radionucléides rejoindront inévitablement la nappe phréatique.
 
Un autre grand danger, le cinquième, est celui que le corium rencontre la nappe aquifère en relation avec la mer. Après tout, les réacteurs ne sont situés qu’à 200 mètres du rivage, et les sous-sols des bâtiments réacteurs sont clairement en dessous du niveau de la mer, comme cela apparaît dans un plan du METI (Ministère de l’économie, du commerce et de l’industrie). Donc si un corium a réellement traversé le radier, il s’est probablement trouvé en contact avec un niveau géologique en relation avec l’océan, car la centrale est construite sur des roches sédimentaires de type « grès », assez perméable à l’eau car souvent fracturé. Or, une contamination continue de la mer durant des dizaines d’années pourrait créer des dommages considérables pour l’ensemble du littoral oriental de l’archipel.
 
coupe centrale meti
 
 
 
On a aussi également beaucoup parlé dans les forums d’un risque d’explosion nucléaire, hypothèse qui a été reprise dans quelques articles. Le terme d’« explosion nucléaire » avait déjà été employé de manière incorrecte dans les médias pour des explosions d’hydrogène. En fait, dans une centrale nucléaire, une explosion n’est pas forcément nucléaire. En revanche, une explosion d’hydrogène dans une centrale nucléaire rejette de la radioactivité dans l’environnement. Même s’il reste de grandes interrogations sur la nature des explosions de l’unité 3, il ne faut pas faire d’amalgame.
En octobre 1999, un accident de criticité a eu lieu au Japon à Tokaï-Mura : lors d’une phase de mélange de composants, le dépassement de la masse critique d’uranium enrichi avait déclenché un « début d'explosion atomique » (9). Pour autant, les défenseurs de l’énergie nucléaire ont toujours affirmé qu’une centrale nucléaire ne pouvait pas exploser comme une bombe atomique. Il y a du vrai et du faux. Une explosion nucléaire implique un emballement de la réaction en chaîne. Or cet emballement peut être plus ou moins important. Quand il est important, c’est que le combustible est très pur et très enrichi. On ne rencontre ça que dans une bombe. Dans une centrale nucléaire en fonctionnement normal, le combustible peut être sujet à un emballement suite à une erreur de manipulation ou une panne du système de refroidissement, mais il ne donnera jamais une explosion atomique du type bombe A car l’environnement, les taux et la nature des combustibles ne le permettent pas. En revanche, cet emballement, même minime, peut conduire à une explosion nucléaire ‒ sixième danger ‒ mais à des niveaux d’énergie comparable à celle des explosions conventionnelles, c’est-à-dire des millions de fois plus petite qu’une explosion nucléaire militaire (10).
 
En outre, il reste encore une grande inconnue, c’est le comportement des différents coriums engendrés par la catastrophe du 11 mars. Ils ont chacun des masses et des compositions différentes, selon ce qu’il y avait au départ dans chaque réacteur et ce qu’ils ont « mangé » sur leur passage. La modélisation de l’activité de coriums d’une aussi grande masse n’a jamais été réalisée, et l’accident de Fukushima devient une « expérience », sauf que cette expérience se fait et se fera dans un milieu non confiné aux dépens de la population japonaise au premier chef, mais aussi de la population mondiale puisqu’elle est partie pour durer des dizaines d’années. L’idée défendue par le milieu nucléaire de se servir du retour d’expérience de Fukushima pour réaménager le parc nucléaire mondial existant est donc un leurre puisque l’on ne connaîtra réellement ce qui s’est passé que dans des décennies. D’où l’utilité de réclamer en urgence un moratoire sur l’emploi de l’énergie nucléaire, au moins pour les centrales les plus vieilles, afin de ne plus prendre le risque d’une telle catastrophe.
 
-------------------------------
 
(7) LAPP (Ralph E.), “Thoughts on nuclear plumbing”, The New York Times, 12 déc. 1971, p. E11.

(8) Source : « Fukushima : 11.500 tonnes d'eau radioactive à la mer », Le Figaro, 5 avril 2011.
 
(9) Source : « Tokaï-Mura.1999 : Un accident de criticité au Japon », site La radioactivité.com
 
 
-----------------------------------

Phebus.jpgEn France, il existe un laboratoire spécialement conçu pour étudier le corium : le Laboratoire d’études du corium et du transfert des radioéléments (LETR, anciennement LEPF). Celui-ci fait partie du Service d'études et de modélisation de l'incendie, du corium et du confinement (
Semic) de la Direction de prévention des accidents majeurs (DPAM). Situé sur le centre de recherches de Cadarache, dans sud-est de la France, il est dirigé par Didier Vola.
L’étude du corium en fusion est donc en lui-même un domaine de recherche : des programmes d’essais sont organisés : MASCA (thermochimie du corium), FOREVER, ou VULCANO (écoulement du corium), LHF (percement de la cuve), QUENCH (renoyage du corium), ainsi que tous les tests portant sur le refroidissement du corium hors cuve. Voici quelques liens pour ceux qui veulent approfondir le sujet :

 

http://www-lgit.obs.ujf-grenoble.fr/users/peyrotm/documents/rapportCEA.pdf
http://gsite.univ-provence.fr/gsite/Local/sft/dir/user-3775/documents/actes/Congres_2007/communications/134.pdf
http://ethesis.inp-toulouse.fr/archive/00001391/
http://www.irsn.fr/FR/Larecherche/publications-documentation/aktis-lettre-dossiers-thematiques/RST/RST-2005/Documents/F5RST05-3.pdf
http://www.sar-net.org/upload/s2-presentationoverviewcoriumbonnet.pdf
http://www.irsn.fr/FR/Larecherche/Formation_recherche/Theses/Theses-soutenues/DPAM/Documents/2010-these-introini.pdf
http://www.irsn.fr/FR/Larecherche/publications-documentation/Publications_documentation/BDD_publi/DSR/SAGR/Documents/rapport_RetD_AG_VF.PDF

 

http://article.nuclear.or.kr/jknsfile/v41/JK0410575.pdf
http://www.irsn.fr/FR/Larecherche/outils-scientifiques/Codes-de-calcul/Pages/Le-systeme-de-logiciels-ASTEC-2949.aspx

 

http://tel.archives-ouvertes.fr/docs/00/34/36/71/PDF/These-C-Journeau.pdf

 


------------------------------------
Articles sur le corium
(et en particulier les excellents articles de Trifouillax de Gen4) :
Corium (Wikipédia)
A quoi ça ressemble le corium ? (radioprotection eklablog).
Album photo sur le corium de Tchernobyl
(Site de Philippe Hillion).
 
 
Revenir à la première partie
 
Mise à jour sur cet article :

Partager cet article

Repost0

commentaires

P
<br /> Merci Phypo pour votre remaque. OK je vais changer H en A pour plus de lisibilité. Mais le texte original n'était pas faux en soi puisque je précisais que l’environnement, les taux et la nature des<br /> combustibles ne permettaient pas une telle explosion.<br /> <br /> <br />
Répondre
P
<br /> Bonne synthése, mais dans dans la partie sur le risque d'explosion vous parlez de bombe de type H (fussion), alors qu'il s'agit d'un risque de type bombe A (fission).<br /> <br /> <br />
Répondre
D
<br /> Bonjour,<br /> <br /> Merci à Florian des nuances apportées, qui n'invalident ni les uns, ni les autres et de sa volonté manifeste de rechercher d'abord, autant que faire se peut,"la vérité des faits".<br /> <br /> S'il est difficile de falsifier un calcul thermodynamique, c'est dans son interprétation que tout se complique et comme, (citation)"aucun fait n'existe hors de son interprétation", il est<br /> finalement compréhensible de s'écharper sur un fait thermodynamique.<br /> <br /> Amicalement,<br /> <br /> Delphin<br /> <br /> <br />
Répondre
F
<br /> La cinétique de la réaction est cependant extrêmement mauvaise à 850°C, bien sûr elle augmentera avec la température mais aussi rapidement que l'on peux le penser. L'article similaire en Anglais<br /> dit très bien:<br /> "For example at 2200 °C about three percent of all H2O molecules are dissociated into various combinations of hydrogen and oxygen atoms, mostly H, H2, O, O2, and OH".<br /> "Par exemple à 2200°C approximativement trois pourcent des molécules d'eau sont dissociées en diverses combinaisons d'atomes d'oxygène et d'hydrogène.<br /> At the very high temperature of 3000 °C more than half of the water molecules are decomposed"<br /> "A la température de 3000°C plus de la moitié des molécules d'eau sont décomposées".<br /> <br /> Des réactions chimiques existent pour "craquer" l'eau à 850°C voir même beaucoup moins, mais aucun des composants requis n'est disponible dans le coeur du réacteur.<br /> <br /> Maintenant nous serons d'accord que même si seulement 1% des molécules d'eau sont craquées, il y aura bel et bien de l'hydrogène avec risque d'explosion.<br /> <br /> Un grand nombre d'explications sur le sujet ont été faites dans des sites Anglo-Saxons à l'époque de la catastrophe et jusqu'à la mi juin. Certes, certains de ces sites sont ouvertement<br /> pro-nucléaires mais il est cependant bien difficile de falsifier des calculs themodynamiques.<br /> Le corium n'a de toute façon pas forcément besoin de "forcer" son passage dans de l'acier dans le cas d'un Réacteur à Eau Bouillante. Les barettes de contrôles y étant en effet insérées par le bas<br /> et non pas par le haut comme dans un REP. C'est l'un des points faibles des réacteurs REB.<br /> <br /> A l'heure actuelle il nous est cependant impossible de savoir exactement ce qui s'est passé et surtout comment. Il faudra sans doute atteindre quelques années avant de savoir l'état exact des<br /> réacteurs, comme cela fut le cas pour Three Mile Island.<br /> <br /> Pour informations, le site Brave New Climate a couvert la crise en détail. Des recherches en utilisant avec Google site:http://bravenewclimate.com/ donnent des résultats et des liens<br /> intéressants.<br /> <br /> Le JAIF, forum de l'industrie nucléaire Japonaise continue également de publier des informations régulières sur l'état du site et des réacteurs.<br /> http://www.jaif.or.jp/english/<br /> <br /> A prendre avec des pincettes comme toute information bien entendu, mais les documents "status of countermeasures" sont intéressants. Des relevés de radioactivités effectués dans la zone d'exclusion<br /> sont également disponibles sur le site en fouillant un peu.<br /> <br /> <br />
Répondre
D
<br /> Bonjour,<br /> <br /> A Florian, Wikipédia : "Le craquage de l'eau est un procédé permettant l'obtention d'hydrogène et d'oxygène, par électrolyse ou en dissociant par la chaleur les atomes composant la molécule d'eau<br /> H2O. C'est une réaction thermochimique se commençant à haute température (entre 850 °C et 900 °C) pour devenir complète vers 2 500 °C."<br /> <br /> Amicalement,<br /> <br /> Delphin<br /> <br /> <br />
Répondre
F
<br /> Je me permettrais de faire remarquer que la température de thermolyse de l'eau n'est pas 850°C mais plutôt 2000°C. Donc s'imaginer du "craquage" d'eau à grande échelle suite à un contact avec le<br /> corium est franchement un peu tiré par les cheveux.<br /> <br /> D'une manière plus générale il serait mieux d'un point de vie scientifique et dirais je même éthique. De soutenir les diverses affirmations présentées ici avec des faits et des calculs tangibles.<br /> La themodynamique et ses lois sont là pour calculer combien de temps et combien il faut pur faire fondre 1 mètre d'acier entre autres choses.<br /> <br /> <br />
Répondre
P
<br /> <br /> Bonsoir Florian<br /> <br /> <br /> Relisez l'article, j'ai juste écrit : "L'eau est craquée à partir de 850°C". Effectivement, la thermolyse est meilleure à 2000°C,<br /> et elle est complète à 2500°C. Etant donné que le corium a une température variant entre 2500 et 3200°C, je ne vois pas où est le problème.<br /> <br /> <br /> Quant à votre deuxième remarque, je rappelle que cet article ne prétend pas être une démonstration scientifique. C'est juste un article informatif, avec des sources. Je suis impatient de<br /> lire des articles de vulgarisation sur le corium écrits par des scientifiques spécialistes de la physique nucléaire, car pour l'instant, il n'y en a pas !<br /> <br /> <br /> <br />
T
<br /> Toi T....,on ne risque pas de te confondre avec Albert Jacquard.<br /> <br /> <br />
Répondre
T
<br /> Je dois hélas reconnaître que nous manquons cruellement de données dans le cas de l'accidentissime de Fukushima ; Au fait, mon cher Glubb-ein-off, votre style me semble familier, nous<br /> connaîtrions-nous de quelque part ?<br /> <br /> <br />
Répondre
G
<br /> En y réfléchissant un peu, votre approximation est encore plus fausse que ce que je pensais :<br /> - d'abord à titre indicatif, dans un REP au bout de 116j après l'arrêt, le rapport P.residuelle/P.fonctionnement est de... 0,068%...<br /> - d'autre part le refroidissement du combustible dans un réacteur à l'arrêt en situation non accidentelle a pour but de maintenir une température au sein des assemblages très en dessous du point de<br /> fusion ; au contraire une fois le coeur fondu... peut importe si l'on est très loin ou proche de cette température...<br /> <br /> J'ai repris votre document (l'exercice de Polytechnique) :<br /> <br /> je suppose une puissance à évacuer égale à Puissance fonctionnement x 0,068% (même s'il est possible que le chiffre soit un peu différent pour un REB) :<br /> M = (3,9.10E2 x 6,8)/(0,15 x 1506,1) = 11,74kg/s<br /> <br /> en convection forcée :<br /> Mv = 11,74 x 0,15 = 1,76kg/s<br /> soit 153t/j...<br /> <br /> Même en supposant que le facteur 0,068% soit supérieur à cela pour un REB, on a une marge énorme par rapport à vos 300t/j (le double!).<br /> <br /> J'ai passé (et non perdu!) assez de temps sur le sujet... bonne continuation, mais posez-vous des questions avant d'écrire à propos d'un edonnée chiffrée : "qu'est-ce que ce chiffre, d'où vient-il,<br /> pourquoi serait-il faux?" Etc.<br /> <br /> <br />
Répondre
G
<br /> ...et je n'ai même pas évoqué la remarque très pertinente de Lenoir sur la décroissance très rapide de la puissance résiduelle en fonction du temps, et ce que l'on soit dans une situation normale<br /> ou accidentelle (à peu de chose près car on peut effectivement arguer de reprises locales de criticité dans le corium, ce qui est exclu dans le combustible en situation normale).<br /> <br /> <br />
Répondre
G
<br /> Bonjour,<br /> <br /> oui oui... mais si c'est pour refaire le calcul donné dans l'exo du poly de Polytechnique, c'est pas la peine...<br /> Vous oubliez plein de choses dans votre "calcul" : la chaleur à évacuer n'est plus du tout égale à la chaleur résiduelle dans une configuration normale : il y a eu :<br /> - explosion (d'hydrogène, mais peut-être de vapeur) ;<br /> - libération de produits de fission ;<br /> - libération de produits neutrophages dans le combustible lors de la fusion du coeur ;<br /> - destruction (au moins partielle) de la structure cristalline du réseau (U)O2 (en supposant qu'il n'y ait pas de MOX... j'en sais rien) création de zones très riches en oxydes au milieu d'une<br /> matrice d'U métallique avec certainement des neutrophages, d'où une perte d'efficacité considérable du combustible ;<br /> - échanges thermiques considérables avec l'extérieur en particulier perte d'énergie lors de la fusion du fond de cuve, perte d'énergie liée à la vaporisation d'une grande quantité d'eau ;<br /> - etc.<br /> <br /> Aujourd'hui ce qu'il reste du coeur (en terme de chaleur si l'on peut parler ainsi) n'a rien à voir avec le coeur du réacteur à l'arrêt dans une situation normale...<br /> <br /> L'énergie se conserve!<br /> <br /> Quel intéret TEPCO aurait-il à mentir sur le débit d'eau de refroisdissemnt? Cette entreprise est de toute façon cuite, tout le monde sait que se sont des menteurs, qu'ils ont faits un tas de<br /> sous-estimations pour réaliser des économies, que cette centrale était très moyennement bien entretenue, qu'ils se sont assis sur une recommandation de la NISA à propos de la hauteur de la digue<br /> sur l'Océan Pacifique, etc etc.<br /> <br /> <br /> Un point : oubliez le barratin de certains forums ou de nombreux clowns mystificateurs se produisent, et lisez de bons ouvrages.<br /> <br /> <br />
Répondre
T
<br /> @ Glubbein : Afin de préparer mon argumentation, seriez-vous d'accord pour affecter un coefficient - que j'estime très conservateur - de titre massique d'environ 0.3 en régime monophasique vapeur,<br /> c'est-à-dire que la vapeur serait environ 3 fois moins efficace que de l'eau pour refroidir le combustible ?<br /> <br /> <br />
Répondre
G
<br /> Pour Trifouillax :<br /> que savez-vous du corium de Fukushima (mettons même pour un seul réacteur) :<br /> - masse?<br /> - état étalé/compact?<br /> - critique/non critique/partiellement critique?<br /> - situation : coincé en milieu de cuve/en fond de cuve/dans le dry well/au-delà?<br /> - quelle proportion pour chaque situation : est-ce la moitié qui est hors cuve, le tiers ; et en cuve?<br /> - état en cuve : lit de débris/amas/amas+lit de débris?<br /> - composition : % de Pu (avec les différents isotopes), d'U, de composés neutrophages, d'actinides, de Cd, de B, d'Ag... Le combustible est-il sous forme d'oxydes (en particulier : le corium<br /> était-il sous stoechiométrique ou stoechiométrique)?<br /> - y avait-il de l'eau en fond de cuve lors de son écoulement vers le fond de cette cuve? Si oui quelle était sa composition (présence de composés neutrophages)?<br /> - y avait-il de l'eau dans le dry well? Si oui quelle était sa composition (présence de composés neutrophages)?<br /> - en supposant que du corium ait quitté le dry well, quelle est la composition du béton qu'il a rencontré?<br /> <br /> Tant que toutes ses données ne seront pas connues clairement, toutes positions concernant le refroidissement du corium et son évolution, ne seront que fantasmes et conjectures des plus hasardeuses<br /> et porte ouverte aux rumeurs les plus folles...<br /> Regardez comment l'IRSN étudie la situation à Fukushima : à partir de faits, et non pas d'hypothèses.<br /> <br /> <br />
Répondre
T
<br /> @Glubbein : Admettons que l'eau agisse un peu sur le corium mais, à votre avis, quel devrait être le débit massique nécessaire pour son refroidissement ? Les 300 tonnes / jour indiquées par<br /> l'opérateur vous paraissent-elles suffisantes ? Et surtout, comment les diriger vers une localisation imprécise ?<br /> <br /> <br />
Répondre
G
<br /> Pour Trifouillax :<br /> le simple fait de vaporiser l'eau permet un refroidissement...<br /> Evitez de répéter les imbécilités écrites sur RPpicpus : ce n'est parce que l'eau se vaporise et donc n'entre effectivement pas en contact avec le corium qu'il ne sert à rien d'arroser un corium...<br /> <br /> <br />
Répondre
T
<br /> @Lenoir : L'énergie contenue dans le combustible (moins le burnup dépensé en production) est toujours présente, elle n'est pas - ne peut pas être - dissipée autrement que :<br /> 1) Sur une période très longue si peu de "dépenses" thermiques du combustible<br /> 2) Sur une période moyenne (quelques mois) si la dépense - notamment le dégagement thermique - est importante<br /> <br /> Le premier principe de la thermodynamique interdit d'avoir un dégagement énorme sur une longue durée mais inversement d'observer une faible dissipation thermique dépensée pendant une période<br /> courte.<br /> <br /> Le métal des control rods s'étant évaporé vers 1500°C, rien n'a retenu durant quelques heures le reliquat d'énergie contenue dans le combustible, même une fois transformé en corium.<br /> <br /> Quant à accorder du crédit à un éventuel "refroidissement" ultérieur du corium par 300 tonnes d'eau/jour, ce n'est rien d'autre qu'une vaste désinformation (et non pas cette fois-ci une simple<br /> dissimulation de Tepco). Les échanges thermiques nécessaires sont BIEN PLUS importants (voir le fil corium sur rp cirkus ou www.gen4.fr, les références sont données) et de toute manière l'eau ou<br /> l'acide borique ne PEUVENT PAS approcher un corium actif sans être vaporisées. Du bon acier ou du béton changerait de phase au contact du corium mais pas de l'eau ? Tssssttt....<br /> <br /> <br />
Répondre
L
<br /> Ce travail est remarquable. Merci pour toutes ces informations et analyses.<br /> <br /> On pourrait encore insister sur les inconnues. Soit parce que l'information est cachée, soit, tout simplement, par lacunes d'observations et de mesures.<br /> <br /> Il faut se souvenir qu'à Tchernobyl les choses n'ont pas été simples et travailler sans données a conduit à des mises en danger gravissime de liquidateurs. On ne saura jamais sans doute si<br /> l'opération de refroidissement avec de l'azote liquide était justifiée. Son coût humain est certainement considérable (non publié). On a retrouvé un peu de ce corium (la patte d'éléphant) dans un<br /> sous sol de la centrale : il s'était arrêté là parce que la dilution avec les matières rencontrées durant son parcours et le temps passé avaient fait baisser la température. Plus tard, le réseau<br /> cristallin complexe qui en liait les composants a été détruit par les radiations et la patte s'est transformée en une sorte de tas de sable.<br /> <br /> Je n'ai pas lu que les liquidateurs de Fukushima soient allés en vue des différents éventuels coriums sortis des cuves des réacteurs. Si l'on en juge par l'évolution de la situation sur place, ces<br /> coriums semblent plus ou moins stabilisés et le temps qui passe conforte cette situation du fait de la décroissance extrêmement rapide de la puissance résiduelle des produits de fission (voir<br /> "l'Electro-nucléaire en France" publié par la CFDT en 1981).<br /> <br /> 6 mois après l'arrêt des réacteurs, l'énergie résiduelle se trouve divisée par 40. La décroissance est de 4 le premier jour, puis de presque 8 après 5 jours et de 20 au bout du premier mois.<br /> <br /> C'est pourquoi refroidir, même très imparfaitement, le réacteur et son contenu, par tous les moyens y compris les plus insensés, représentait sans doute la bonne option, pour gagner le plus<br /> possible de ce précieux temps. Je l'avais dit dès le début et souligné qu'en l'absence d'excursion nucléaire initiale, le scénario en cours était celui d'un Tchernobyl au ralenti et que<br /> l'enseignement de TMI suggérait un délai de mise en sûreté définitive de l'ensemble des installation de plusieurs dizaines d'années, d'autant que les bâtiments réacteurs ont été dévastés par les<br /> explosions d'hydrogène.<br /> <br /> Pour me résumer, les dangers évoqués concernent les toutes premières heures sans refroidissement, avec l'hypothèse qu'aucun refroidissement un peu efficace n'est apporté durant les heures<br /> suivantes. J'avoue que je ne sais pas dans quelle mesure ils se sont réalisés à Fukushima. Mon opinion vaut ce qu'elle vaut : à mon avis, les informations nécessaires pour apprécier la situation<br /> sont, et cachées, et insuffisantes.<br /> <br /> <br />
Répondre
D
<br /> Je transmets actuellement l'adresse courriel de vos deux articles à toutes celles et tous ceux de mes connaissances susceptibles d'être intéressés.<br /> <br /> Pour ceux qui sont en vacances, ils auront de quoi lire à leur rentrée !<br /> <br /> Merci encore, ainsi qu'à l'invité dont le surnom commence par un "T".<br /> <br /> Delphin<br /> <br /> <br />
Répondre
H
<br /> Bonjour,<br /> <br /> Je pense comme Caralmera, lectrice et participante du bistrobarblog, qui vient de te laisser un commentaire. Bon travail. Il est vrai que j'ai parfois du mal à trouver les mots français pour<br /> traduire les expressions concices et bien évocatrices de l'anglais pour meltdown, melt-through et meltout. Pour ne pas me disperser, je me suis concentrée sur les traductions du blog EX-SKF, qui a<br /> l'avantage d'être géré par un japonais résidant en Californie, mais qui accède aux infos japonaises directement. Aweb2u, est également une de mes sources et nous nous échangeons des<br /> traductions.<br /> <br /> Bonne continuation.<br /> Amitiés<br /> <br /> Hélios<br /> <br /> <br />
Répondre
C
<br /> Bravo et merci pour votre formidable travail !<br /> Cordialement<br /> <br /> <br />
Répondre

  • : Fukushima 福島第一
  • Fukushima 福島第一
  • : Un blog consacré entièrement à la catastrophe nucléaire de Fukushima et à ses répercussions au Japon et dans le monde.
  • Contact

Mentions légales

Directeur de la publication :

Pierre Fetet

Lien vers les mentions légales du blog de Fukushima

Soutien au blog de Fukushima

C'est ici !

 

 

 

BD : Fukushima-Chronique d'un accident sans fin (Bertrand Galic, Roger Vidal)

Présentation de la BD par l'éditeur

Dossier documentaire 10 pages sur Fukushima (Pierre Fetet)

 

Spectacle

Le spectacle d'Audrey Vernon "Fukushima, work in progress" est disponible en ligne à cette adresse :

https://www.imagotv.fr/spectacles/fukushima_work_in_progress

 

 

 

Chaîne vidéo du blog de Fukushima

 

 

Outil de traduction gratuite de site Internet

Actualités sur Fukushima

L'ACROnique de Fukushima

Les Veilleurs de Fukushima

Nos voisins lointains

The Watchers of Fukushima

Projet Mieruka Fukushima

.

« Sans le web, mémoire vive de notre monde, sans ces citoyens qui n’attendent pas des anniversaires, de tristes anniversaires, pour se préoccuper du sort des réfugiés de Fukushima, eh bien le message poignant de Monsieur Idogawa (maire de Futuba) n’aurait strictement aucun écho. » (Guy Birenbaum, Europe 1, 1er mars 2013)

Infos en direct

webcam tepco 

 Webcam

 TEPCO

.

webcam tepco 1 

 Webcam

 TEPCO 1

.

reacteur2aout2011webcamTBS Webcam

 TBS/JNN

 

radioactivité Tokyo Radioactivité

 à Tsukuba

 en continu

 

 

Éditions de Fukushima

Publications

Le dernier livre de Jean-Marc Royer

 

 

Le dernier numéro d'Atomes crochus

 

 

Frankushima : un essai graphique sur la catastrophe de Fukushima et le risque nucléaire en France. Site dédié : frankushima.com

 

Un livre essentiel sur les conséquences de Tchernobyl

Télécharger la version française ici.

 

Un livret pour tout apprendre sur le nucléaire !

A télécharger ici

 

 

 

 

sitesanspub

Créer un blog gratuit sur overblog.com - Contact - CGU -